Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-484484

RESUMO

The COVID-19 pandemic has had enormous health, economic, and social consequences. Vaccines have been successful in reducing rates of infection and hospitalization, but there is still a need for an acute treatment for the disease. We investigate whether compounds that bind the human ACE2 protein can interrupt SARS-CoV-2 replication without damaging ACE2s natural enzymatic function. Initial compounds were screened for binding to ACE2 but little interruption of ACE2 enzymatic activity. This set of compounds was extended by application of quantitative structure-activity analysis, which resulted in 512 virtual hits for further confirmatory screening. A subsequent SARS-CoV-2 replication assay revealed that five of these compounds inhibit SARS-CoV-2 replication in human cells. Further effort is required to completely determine the antiviral mechanism of these compounds, but they serve as a strong starting point for both development of acute treatments for COVID-19 and research into the mechanism of infection. O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=98 SRC="FIGDIR/small/484484v1_ufig1.gif" ALT="Figure 1"> View larger version (47K): org.highwire.dtl.DTLVardef@173d7c9org.highwire.dtl.DTLVardef@5c0021org.highwire.dtl.DTLVardef@c9caaorg.highwire.dtl.DTLVardef@18d23_HPS_FORMAT_FIGEXP M_FIG TOC Graphic: Overall study design. C_FIG

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-178889

RESUMO

COVID-19 is undoubtedly the most impactful viral disease of the current century, afflicting millions worldwide. As yet, there is not an approved vaccine, as well as limited options from existing drugs for treating this disease. We hypothesized that combining drugs with independent mechanisms of action could result in synergy against SARS-CoV-2. Using in silico approaches, we prioritized 73 combinations of 32 drugs with potential activity against SARS-CoV-2 and then tested them in vitro. Overall, we identified 16 synergistic and 8 antagonistic combinations, 4 of which were both synergistic and antagonistic in a dose-dependent manner. Among the 16 synergistic cases, combinations of nitazoxanide with three other compounds (remdesivir, amodiaquine and umifenovir) were the most notable, all exhibiting significant synergy against SARS-CoV-2. The combination of nitazoxanide, an FDA-approved drug, and remdesivir, FDA emergency use authorization for the treatment of COVID-19, demonstrate a strong synergistic interaction. Notably, the combination of remdesivir and hydroxychloroquine demonstrated strong antagonism. Overall, our results emphasize the importance of both drug repurposing and preclinical testing of drug combinations for potential therapeutic use against SARS-CoV-2 infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...